# The Polar Express

Itâ€™s almost December, and the Polar Express is planning for
its annual trip towards the North Pole. The Polar Express is a
train with $N$ carts
numbered $1$ to
$N$, and you are the
conductor! However, due to an exceptionally heavy snowstorm,
your train recently ran into an accident and veered off-track.
Now, the ordering of all of the carts have been scrambled! You
cannot leave to pick up the children for Christmas unless you
can reorganize the train in the original sorted order.

At the start of every hour, you can move the first
$K$ carts from the front
of the train to a holding station, which is a stack. At the end
of every hour, the magical elves of the holding station will
move the carts from the holding station to the back of the
train, in reverse order.

For example, suppose the train is currently ordered
$1, 2, 5, 4, 3$ from front
to back. You can move the first three trains to the holding
station. At the end of the hour, your carts will be returned to
you, and the train will be ordered as $4, 3, 5, 2, 1$.

Your job is to come up with a sequence of instructions to sort the train, such that cart $1$ is at the front and cart $N$ is at the back. However, Christmas is in $1\, 000$ hours and you cannot take longer than that to complete your task. It is guaranteed that such a solution will always exist.

## Input

The first line of input consists of a single integer
$N$ ($1 \leq N \leq 200$), specifying the
number of carts that the train contains.

$N$ lines follow, each of
which consists of a single integer, together forming a
permutation of the numbers from $1$ to $N$. This permutation specifies the
initial order of the train carts.

## Output

On the first line of output, print a single integer
$M$, the number days it
will take to sort the train.

Print $M$ lines next, the
$i$th of which should
consist of a single integer denoting the number of carts to
move to the holding station on the $i$th hour. Each integer printed must
be between $1$ and
$N$, inclusive.

Your answer will be considered correct if $0 \leq M \leq 1\, 000$, and your
given sequence correctly sorts the train carts.

Sample Input 1 | Sample Output 1 |
---|---|

5 3 2 1 4 5 |
2 4 2 |