Problem H
Hard Array Problem
This is an array problem.
Given two arrays of $N$ numbers with values $A_1, \dots , A_ N$ and $B_1, \dots , B_ N$. Let $A_{L, R}$ be the sum of elements in the subarray of $A$ from index $L$ to $R$ inclusive. Let $B_{L, R}$ be defined similarly.
Minimise $A_{L, R}^2 + B_{L, R}^2$ across all $1\leq L \leq R \leq N$.
Constraints
$1 \leq N \leq 5 \times
10^5$
$-10^9 \leq A_ i, B_ i \leq
10^9$
Input
The first line contains a single integer, $N$, the length of both arrays.
The second line contains $N$ space-separated integers,
$A_1, A_2, \dots , A_
N$.
The second line contains $N$ space-separated integers,
$B_1, B_2, \dots , B_
N$.
Output
Output a single integer, the minimised sum.
Sample Input 1 | Sample Output 1 |
---|---|
3 4 -1 -1 -1 -1 4 |
2 |
Sample Input 2 | Sample Output 2 |
---|---|
2 4 -4 1 1 |
4 |